Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 5, 2026
-
Free, publicly-accessible full text available May 17, 2026
-
Abstract This paper presents a novel real-time kinematic simulation algorithm for planar N-bar linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation technique that transforms prismatic elements into a combination of revolute joint and links. This gives rise to a unified system of geometric constraints and a general-purpose solver which adapts to the complexity of the mechanism. The solver requires only two types of methods—fast dyadic decomposition and relatively slower optimization-based—to simulate all types of planar mechanisms. From an implementation point of view, this algorithm simplifies programming without requiring handling of different types of mechanisms. This versatile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simulation time and structural complexity, shedding light on computational demands. Demonstrative examples showcase the practicality of this method.more » « less
-
Abstract Recent progress in deep learning has significantly impacted materials science, leading to accelerated material discovery and innovation. ElemNet, a deep neural network model that predicts formation energy from elemental compositions, exemplifies the application of deep learning techniques in this field. However, the “black-box” nature of deep learning models often raises concerns about their interpretability and reliability. In this study, we propose XElemNet to explore the interpretability of ElemNet by applying a series of explainable artificial intelligence (XAI) techniques, focusing on post-hoc analysis and model transparency. The experiments with artificial binary datasets reveal ElemNet’s effectiveness in predicting convex hulls of element-pair systems across periodic table groups, indicating its capability to effectively discern elemental interactions in most cases. Additionally, feature importance analysis within ElemNet highlights alignment with chemical properties of elements such as reactivity and electronegativity. XElemNet provides insights into the strengths and limitations of ElemNet and offers a potential pathway for explaining other deep learning models in materials science.more » « less
An official website of the United States government
